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Switching from Coal to Natural Gas Reduces CO,_Emissions

However, Methane is a powerful Greenhouse Gas

_ Global Warming Potential
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* Methane is a significantly more powerful GHG than CO,
« |t falls out of the atmosphere more rapidly than CO,

 Methane leaks from Natural Gas Infrastructure can
reduce or eliminate GHG benefit of switching from coal to
natural gas

© 2011 United Nations Framework Convention on Climate Change
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Methane Leaks Can Make GHG Emissions
from Natural Gas Worse than Coal
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Coal to gas: the influence of methane leakage
Tom M. L. Wigley
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> 3500 Shale Gas Wells Were Drilled in the US in 2010
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Dan Yergin, Wall Street Journal

Is anyone checking all of these wells for methane leaks
“Invisible Oil Spills?”, can the Industry Self Regulate?
This is also a wasted resource, and wasted $3.
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Report in Nature 2/12: Natural Gas Producers in Denver Area
losing ~4% of their Methane.

celily journal of science

A LOSING BATTLE

Estimates of methane losses from gas fields near Denver, Colorado, based on air
sampling differ considerably from calculations based on industry activity.

Inventory | —
of industry - /// _,./f,-’ 2

activity

e //////

Mobile lab -

s

0 50 100 150 200 250
Billion grams of methane per year

“the debate has been marked
by a scarcity of hard data.”
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Techno-Economic Goal

Find the Leaks and Stop Them.

Precise Ubiquitous Geospatial Location
Of Methane Concentrations in the
Atmosphere
1 square mile increments
1 PPM Resolution
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There are satellite based CH4 & CO2 measurements, can we
increase their resolution?

Methane SCIAMACHY (WFMDv1 O)IENVISAT 2003 01

OCO-2

Orbiting Carbon Observatory
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Remote Detection through Spectroscopy
Semiconductor Quantum Cascade Lasers Developed @ Bell Labs

QCL I: —

TF MR ECE"
—

Appl Phys B H H
DOI 10.1007/s00340-011-4800-0 APPIIEd PhySICS B
Lasers and Optics

Can the Detection
Range be Extended?

Quantum-cascade laser photoacoustic detection
of methane emitted from natural gas powered engines

M.V. Rocha - M.S. Sthel - ML.G. Silva - L.B. Paiva -
E.W. Pinheiro - A. Miklos - H. Vargas
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Technology that can do it
Plane/UAV to Ground
M Spectroscopy
‘ - (Triangulation)
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Technology that can do it

Plane/UAV to Plane/UAV
Spectroscopy ,,?4

(Triangulation)
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Smaller Types of UAVs: QuadRotors, Others

Intelligent Coordination + 4 f*"‘
of many UAVs ¥ur % N ?\‘b




Going Even Smaller: Super Small UAVs and The Smart Dust
Concept




Can We Crowdsource It?
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Give people cheap sensors and Iphone/Android Apps.

Follow the Concentration Gradients



Methane Leak Detection Program Name:
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Emerging Ideas

Topping Cycles for
Power Generation

Asegun Henry, ARPA-E Fellow




Heat Engines

{ Steam-Rankine J {Air-Brayton J
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Heat Engine Stack

Comblned Cycle] { Topping Cycle }

T1 500°C T >1500°C
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What Can Get Us There?

Thermally Regenerative
Electrochemical Systems
e_

Thermoelectrics
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What Can Get Us There?

Thermally Regenerative
Electrochemical Systems
e_

Thermoelectrics
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What Can Get Us There?

Photovoltaics at High Temperature (565°C) Thermionic energy conversion
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Goal: > 60% combined cycle, >10 yr lifetime
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Potential Program Name:

HERMODYNAMICALLY
PTIMAL
OWER from the

IGHEST
CHIEVABLE
EMPERATURES
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Future Bioreactor Concepts

Robert Conrado
ARPA-E Fellow




All biofuels face similar challenges

1) Footprint

Challenge
EE— 2) Process efficiency

3) Land/water
requirements




Direct conversion offers significant opportunity

Sunlight

1) Small footprint

Opportunity
S — —_—> 2) High efficiency

Renewable Electricity 3) Low land/water
use
&3 A ES
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Fundamentally different challenge to convert
sunlight/electricity vs. sugars into fuel

Sunlight Sugar-based

Biofuels
— "'“ E VS.

Renewable Electricity
& A ER
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How is this done today? Why is it hard?

| ) Large Bioreactor
Areaqs

7)Long Time Scales

3) Energy Intensive




Few bioreactor designs being explored

Photobioreactor Photobioreactor
0.5-5 m2/m3 10-50 m2/m3

To achieve commercially relevant productivities, require
>500 m%/m?




Potential solutions from optics community

Photobioreactors concepts

Optical Fibers Photonic Crystal
103-10 m2/m3 10°-10® m2/m3




Potential solutions from materials community

Electrobioreactors concepts

Bﬂery Elecirode Nlckel Foam
103-104 m2/m3 103-104 m2/m3
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Rapid EV Charging

Amul D. Tevar, ARPA-E Fellow




Could EV charging be made more convenient
than filling a tank of gas?

‘I sure don’t want to sit around twiddling my thumbs
for 30 minutes at a “charge station” waiting for an
EV to charge...’

- Comment from hybridcars.com forum
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Most Li-lon pack charging times are long

Sample of US Current & Future EV Charging
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2 hr: Consumer charge time expectations

- l 10 min: Could we achieve this?
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Significant technical issues with rapid charging

Utility

= Hapld = Demand
Charging

| & Issues = .
Materials
Cost
4 LS

Communication
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How could we approach this?

Battery Swapping. . . but why EV Flow battery
swap the whole thinge
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EV Self-assembled battery

Station Pump

v

|:> Just pump fluid at station and recharge
without removing battery

35

Funct.Mater. 2007, 17, 379-389 —
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What else with rapid charging?

Rapid Charge Stations Inductive/Wireless Charging

Removes cost of at-home Charging without cables
charging units

—

H—"“:“Sowc\eBoLs@rdC & Szczepanek, A. Intl Batt, Hybrid and Fuel Cell EV
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What would the solution look like?

* Key: Driving Miles per Minute Charge

* Safety & Stability

* How can we avoid traditional battery issues or limitationse
* Are there advances from other fields?

* Are there secondary issues that may make high rates intractable?e

Image: Wired._c_c_mj__



Potential Project
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